Identities
csc t = 1/sin t sec t = 1/cos t
cot t = 1/tan t tan t = sin t/cos t
cot t = cos t/sin t sin2 t + cos2 t = 1
1 + tan2 t = sec2 t 1 + cot2 t = csc2 t
Addition Formulas
sin(u + v) = sinu cosv + cosu sinv
cos(u + v) = cosu cosv = sinu sinv
tan(u + v) = (tanu + tanv)/(1 – tanu tanv)
Subtraction Formulas
sin(u – v) = sinu cosv = cosu sinv
cos(u – v) = cosu cosv + sinu sinv
tan(u – v) = (tanu – tanv)/(1 + tanu tanv)
Formulas for Negatives
sin(-t) = -sin t csc(-t) = -csc t
cos(-t) = cos t sec(-t) = sec t
tan(-t) = -tan t cot(-t) = -cot t
Double Angle Formulas
sin 2u = 2sinu cosu
cos 2u = cos2 u – sin2 u = 1 – 2sin2 u = 2cos2 u - 1
Half Angle Identities
sin2 u = (1 – cos 2u)/2
cos2 u = (1 + cos 2u)/2
tan2 u = (1 – cos 2u)/(1 + cos 2u)
Half Angle Formulas
sin u/2 = + sqrt[(1 – cos u)/2]
cos u/2 = + sqrt[(1 + cos u)/2]
tan u/2 = (1 – cos u)/sin u = sin u/(1 + cos u)
Cofunction Formulas
sin(π/2 – u) = cos u csc(π/2 – u) = sec u
cos(π/2 – u) = sin u sec(π/2 – u) = csc u
tan(π/2 – u) = cot u cot(π/2 – u) = tan u
Product To Sum Formulas
sinu cosv = ½[sin(u + v) + sin(u – v)]
cosu sinv = ½[sin(u + v) – sin(u – v)]
cosu cosv = ½[cos(u + v) + cos(u – v)]
sinu sinv = ½[cos(u – v) – cos(u + v)]
Sum To Product Formulas
sinu + sinv = 2sin[(u+v)/2] cos[(u-v)/2]
sinu – sinv = 2cos[(u+v)/2] sin[(u-v)/2]
cosu + cosv = 2cos[(u+v)/2] cos[(u-v)/2]